Effects of NaCl on flows of N and mineral ions and on NO3-reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton
The effects of NaCl on the transport rates of cations, NO3-, and reduced N compounds between roots and shoot and on NO3- assimilation rate were examined on plants of two species differing in their sensitivity to salinity, bean (Phaseolus vulgare L cv Gabriella) and cotton (Gossypium hirsutum L. cv A...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1994-08, Vol.105 (4), p.1409-1418 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of NaCl on the transport rates of cations, NO3-, and reduced N compounds between roots and shoot and on NO3- assimilation rate were examined on plants of two species differing in their sensitivity to salinity, bean (Phaseolus vulgare L cv Gabriella) and cotton (Gossypium hirsutum L. cv Akala). Biomass production after 20 d in response to 50 and 100 mM NaCl decreased by 48 and 59% in bean, but only 6 and 14% in cotton. The comparison of the flow patterns obtained for control and NaCl-fed plants showed that salinity induced a general decrease in all the fluxes involved in partitioning of N and the various ions. This decrease was markedly higher in bean than in cotton. Within either species, the different flows (uptake, xylem flux, phloem flux) of a given element were affected by NaCl to the same extent with minor exceptions. No specific effect of salinity on any of the components of N partitioning were discerned. The greater sensitivity of nitrate reductase activity to NaCl in bean leaves compared to cotton leaves seems to be due to a decreased compartmentalization of ions rather than to a difference in salt tolerance of the enzyme itself. Overall, our data show that alteration of mineral nutrition is not solely the reflection of a decreased growth rate, but also is a general process that impairs uptake of all the minerals even at mild NaCl salinity |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.105.4.1409 |