Steady-state Kinetic Mechanism of PDK1

PDK1 catalyzes phosphorylation of Thr in the conserved activation loop region of a number of its downstream AGC kinase family members. In addition to the consensus sequence at the site of phosphorylation, a number of PDK1 substrates contain a PIF sequence (PDK1-interacting fragment), which binds and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2006-08, Vol.281 (31), p.21670-21681
Hauptverfasser: Gao, Xinxin, Harris, Thomas K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PDK1 catalyzes phosphorylation of Thr in the conserved activation loop region of a number of its downstream AGC kinase family members. In addition to the consensus sequence at the site of phosphorylation, a number of PDK1 substrates contain a PIF sequence (PDK1-interacting fragment), which binds and activates the kinase domain of PDK1 (PDK1(ΔPH)). To gain further insight to PIF-dependent catalysis, steady-state kinetic and inhibition studies were performed for His6-PDK1(ΔPH)-catalyzed phosphorylation of PDK1-Tide (Tide), which contains an extended “PIF” sequence C-terminal to the consensus sequence for PDK1 phosphorylation. In two-substrate kinetics, a large degree of negative binding synergism was observed to occur on formation of the active ternary complex (αKdATP=40μM and αKdTide=80μM) from individual transitory binary complexes (KdATP=0.6μM and KdTide=1μM). On varying ATP concentrations, the ADP product and the (T/E)-PDK1-Tide product analog (p′Tide) behaved as competitive and noncompetitive inhibitors, respectively; on varying Tide concentrations, ADP and p′Tide behaved as noncompetitive and competitive inhibitors, respectively. Also, negative binding synergism was associated with formation of dead-end inhibited ternary complexes. Time progress curves in pre-steady-state studies under “saturating” or kcat conditions showed (i) no burst or lag phenomena, (ii) no change in reaction velocity when adenosine 5′-O-(thiotriphosphate) was used as a phosphate donor, and (iii) no change in reaction velocity on increasing relative microviscosity (0 ≤ η/η0 ≤ 3). Taken together, PDK1-catalyzed trans-phosphorylation of PDK1-Tide approximates a Rapid Equilibrium Random Bi Bi system, where motions in the central ternary complex are largely rate-determining.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M602448200