Transformation and regeneration of two cultivars of pea (Pisum sativum L.)

A reproducible transformation system was developed for pea (Pisum sativum L.) using as explants sections from the embryonic axis of immature seeds. A construct containing two chimeric genes, nopaline synthase-phosphinothricin acetyl transferase (bar) and cauliflower mosaic virus 35S-neomycin phospho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1993-03, Vol.101 (3), p.751-757
Hauptverfasser: Schroeder, H.E, Schotz, A.H, Wardley-Richardson, T, Spencer, D, Higgins, T.J.V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A reproducible transformation system was developed for pea (Pisum sativum L.) using as explants sections from the embryonic axis of immature seeds. A construct containing two chimeric genes, nopaline synthase-phosphinothricin acetyl transferase (bar) and cauliflower mosaic virus 35S-neomycin phosphotransferase (nptII), was introduced into two pea cultivars using Agrobacterium tumefaciens-mediated transformation procedures. Regeneration was via organogenesis, and transformed plants were selected on medium containing 15 mg/L of phosphinothricin. Transgenic peas were raised in the glasshouse to produce flowers and viable seeds. The bar and nptII genes were expressed in both the primary transgenic pea plants and in the next generation progeny, in which they showed a typical 3:1 Mendelian inheritance pattern. Transformation of regenerated plants was confirmed by assays for neomycin phosphotransferase and phosphinothricin acetyl transferase activity and by northern blot analyses. Transformed plants were resistant to the herbicide Basta when sprayed at rates used in field practice
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.101.3.751