Adenylosuccinate synthetase from maize. Purification, properties, and mechanism of inhibition by 5'-phosphohydantocidin

Adenylosuccinate synthetase (AdSS) is the site of action of hydantocidin, a potent microbial phytotoxin. A kinetic analysis of the mode of inhibition of a plant adenylosuccinate synthetase by the active metabolite 5'-phosphohydantocidin (5'-PH) was the objective of the present study. AdSS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1997-06, Vol.114 (2), p.549-555
Hauptverfasser: Walters, E.W. (Novartis Crop Protection, Palo Alto, CA.), Lee, S.F, Niderman, T, Bernasconi, P, Subramanian, M.V, Siehl, D.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adenylosuccinate synthetase (AdSS) is the site of action of hydantocidin, a potent microbial phytotoxin. A kinetic analysis of the mode of inhibition of a plant adenylosuccinate synthetase by the active metabolite 5'-phosphohydantocidin (5'-PH) was the objective of the present study. AdSS was purified 5800-fold from maize (Zea mays), to our knowledge the first purification of the enzyme from a plant source. N-terminal sequencing established the cleavage site of the previously published deduced sequence of the initial transcript. The subunit molecular mass was determined to be 48 kD and the isoelectric point was at pH 6.1. Values of the Michaelis constant for the three substrates IMP, GTP, and aspartate were 21, 16, and 335 micromolars, respectively. Inhibition of AdSS by 5'-PH was measurably time-dependent. The trace of the inactivation curve could not be altered by preincubating the enzyme and inhibitor in the absence of substrates but could be linearized by preincubating the enzyme with inhibitor, aspartate, GTP (or GDP), and inorganic phosphate. Inhibition of AdSS by 5'-PH was competitive with IMP, with an apparent Ki of 22 nM. Apparently, 5'-PH inhibits the enzyme by binding to the IMP site and forming a tight, dead-end complex
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.114.2.549