The construction of Arabidopsis expressed sequence tag assemblies. A new resource to facilitate gene identification

The generation of large numbers of partial cDNA sequences, or expressed sequence tags (ESTs), has provided a method with which to sample a large number of genes from an organism. More than 25,000 Arabidopsis thaliana. ESTs have been deposited in public databases, producing the largest collection of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1996-11, Vol.112 (3), p.1177-1183
Hauptverfasser: Rounsley, Steven D., Glodek, Anna, Sutton, Granger, Adams, Mark D., Somerville, Chris R., Venter, J. Craig, Kerlavage, Anthony R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generation of large numbers of partial cDNA sequences, or expressed sequence tags (ESTs), has provided a method with which to sample a large number of genes from an organism. More than 25,000 Arabidopsis thaliana. ESTs have been deposited in public databases, producing the largest collection of ESTs for any plant species. We describe here the application of a method of reducing redundancy and increasing information content in this collection by grouping overlapping ESTs representing the same gene into a "contig" or assembly. The increased information content of these assemblies allows more putative identifications to be assigned based on the results of similarity searches with nucleotide and protein databases. The results of this analysis indicate that sequence information is available for approximately 12,600 nonoverlapping ESTs from Arabidopsis. Comparison of the assemblies with 953 Arabidopsis coding sequences indicates that up to 57% of all Arabidopsis genes are represented by an EST. Clustering analysis of these sequences suggests that between 300 and 700 gene families are represented by between 700 and 2000 sequences in the EST database. A database of the assembled sequences, their putative identifications, and cellular roles is available through the World Wide Web.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.112.3.1177