Biochemical characterization of Arabidopsis wild-type and mutant phytochrome B holoproteins

Although phytochrome B (phyB) plays a particularly important role throughout the life cycle of a plant, it has not been studied in detail at the molecular level due to its low abundance. Here, we report on the expression, assembly with chromophore, and purification of epitope-tagged Arabidopsis phyB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 1997-12, Vol.9 (12), p.2271-2280
Hauptverfasser: Elich, T.D, Chory, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although phytochrome B (phyB) plays a particularly important role throughout the life cycle of a plant, it has not been studied in detail at the molecular level due to its low abundance. Here, we report on the expression, assembly with chromophore, and purification of epitope-tagged Arabidopsis phyB. In addition, we have reconstructed two missense mutations, phyB-4 and phyB-101, isolated in long hypocotyl screens. We show that mutant proteins phyB-4 and phyB-101 exhibit altered spectrophotometric and biochemical properties relative to the wild-type protein. In particular, we demonstrate that phyB-101 Pfr exhibits rapid nonphotochemical (dark) reversion to Pr that results in a lower photoequilibrium level of the active Pfr form. We conclude that this occurs in vivo as well because phyB-101 mutants are shown to lack an end-of-day-far-red hypocotyl elongation response that requires a stable Pfr species. We propose that this Pfr instability may be the primary molecular mechanism underlying the phyB-101 mutant phenotype
ISSN:1040-4651
1532-298X
DOI:10.1105/tpc.9.12.2271