Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9
In many interactions between plants and their pathogens, resistance to infection is specified by plant resistance (R) genes and corresponding pathogen avirulence (Avr) genes. In tomato, the Cf-4 and Cf-9 resistance genes map to the same location but confer resistance to Cladosporium fulvum through r...
Gespeichert in:
Veröffentlicht in: | The Plant cell 1997-12, Vol.9 (12), p.2209-2224 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In many interactions between plants and their pathogens, resistance to infection is specified by plant resistance (R) genes and corresponding pathogen avirulence (Avr) genes. In tomato, the Cf-4 and Cf-9 resistance genes map to the same location but confer resistance to Cladosporium fulvum through recognition of different avirulence determinants (AVR4 and AVR9) by a molecular mechanism that has yet to be determined. Here, we describe the cloning and characterization of Cf-4, which also encodes a membrane-anchored extracellular glycoprotein. Cf-4 contains 25 leucine-rich repeats, which is two fewer than Cf-9. The proteins have 91% identical amino acids. DNA sequence comparison suggests that Cf-4 and Cf-9 are derived from a common progenitor sequence. Amino acid differences distinguishing Cf-4 and Cf-9 are confined to their N termini, delimiting a region that determines the recognitional specificity of ligand binding. The majority of these differences are in residues interstitial to those of the leucine-rich repeat consensus motif. Many of these residues are predicted to form a solvent-exposed surface that can interact with the cognate ligand. Both Cf-4 and Cf-9 are located within a 36-kb region comprising five tandemly duplicated homologous genes. These results provide further insight into the molecular basis of pathogen perception by plants and the organization of complex R gene loci |
---|---|
ISSN: | 1040-4651 1532-298X |
DOI: | 10.1105/tpc.9.12.2209 |