Origins and Genetic Nonvariability of the Proteins Which Diffuse from Maize Pollen

The major function of pollen is to deliver the sperm nuclei to the embryo sac. It does this by germinating and producing a pollen tube and thus provides a relatively simple developmental system for study. Mutants for many pollen functions are accessible, as it is a haploid cell. Mature pollen was fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental health perspectives 1981-01, Vol.37, p.53-59
1. Verfasser: Porter, Elizabeth K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The major function of pollen is to deliver the sperm nuclei to the embryo sac. It does this by germinating and producing a pollen tube and thus provides a relatively simple developmental system for study. Mutants for many pollen functions are accessible, as it is a haploid cell. Mature pollen was fractionated into diffusible proteins, soluble proteins, and proteins insolubly associated with membrane or wall; these protein fractions have been quantified and cataloged by native and SDS polyacrylamide gel electrophoresis. Diffusible proteins are localized in the pollen grain wall whereas soluble proteins are cytoplasmic. The roles of haploid and diploid genomes in specifying these proteins is discussed. Pollen from maximally divergent maize lines was examined for quantitative and qualitative variation in the diffusible proteins. A surprising conservation was found for these proteins indicating some functional role which is, at present, unknown. Initial experiments on the incorporation of35S-methionine into germinating pollen indicate that major representatives of the diffusible proteins are made within the pollen grain itself. They are presumably included in the pollen wall during development and diffuse out through the pore region. Studies with pollen mRNA and experiments on incorporation of35S-methionine into developing anthers are underway and will identify the origin of these proteins. A knowledge of the basic developmental biology of maize pollen is a prerequisite to its judicious use as a monitor of environmental mutagens.
ISSN:0091-6765
1552-9924
DOI:10.1289/ehp.813753