Activation of Ntf4, a Tobacco Mitogen-Activated Protein Kinase, during Plant Defense Response and Its Involvement in Hypersensitive Response-Like Cell Death

Mitogen-activated protein kinase (MAPK) cascades are important signaling modules in eukaryotic cells. They function downstream of sensors/receptors and regulate cellular responses to external and endogenous stimuli. Recent studies demonstrated that SIPK and WIPK, two tobacco (Nicotiana spp.) MAPKs,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2006-08, Vol.141 (4), p.1482-1493
Hauptverfasser: Ren, Dongtao, Yang, Kwang-Yeol, Li, Guo-Jing, Liu, Yidong, Zhang, Shuqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mitogen-activated protein kinase (MAPK) cascades are important signaling modules in eukaryotic cells. They function downstream of sensors/receptors and regulate cellular responses to external and endogenous stimuli. Recent studies demonstrated that SIPK and WIPK, two tobacco (Nicotiana spp.) MAPKs, are involved in signaling plant defense responses to various pathogens. Ntf4, another tobacco MAPK that shares 93.6% and 72.3% identity with SIPK and WIPK, respectively, was reported to be developmentally regulated and function in pollen germination. We found that Ntf4 is also expressed in leaves and suspension-cultured cells. Genomic analysis excluded the possibility that Ntf4 and SIPK are orthologs from the two parental lines of the amphidiploid common tobacco. In vitro and in vivo phosphorylation and activation assays revealed that Ntf4 shares the same upstream MAPK kinase, NtMEK2, with SIPK and WIPK. Similar to SIPK and WIPK, Ntf4 is also stress responsive and can be activated by cryptogein, a proteinaceous elicitin from oomycetic pathogen Phytophthora cryptogea. Tobacco recognition of cryptogein induces rapid hypersensitive response (HR) cell death in tobacco. Transgenic Ntf4 plants with elevated levels of Ntf4 protein showed accelerated HR cell death when treated with cryptogein. In addition, conditional overexpression of Ntf4, which results in high cellular Ntf4 activity, is sufficient to induce HR-like cell death. Based on these results, we concluded that Ntf4 is multifunctional. In addition to its role in pollen germination, Ntf4 is also a component downstream of NtMEK2 in the MAPK cascade that regulates pathogen-induced HR cell death in tobacco.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.106.080697