Role of Lime in the Generation of Reactive Oxygen Species from Betel-Quid Ingredients

The role of lime in the formation of reactive oxygen species (ROS), i.e.,${\rm O}_{2}^{\overline{\cdot}}$, H2O2, and OH•, from betel-quid components (extracts of areca nut and catechu) was investigated in vitro using a chemiluminescence technique and an assay for oxidative DNA damage involving analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental health perspectives 1992-11, Vol.98, p.203-205
Hauptverfasser: Nair, Urmila J., Obe, Günter, Friesen, Marlin, Goldberg, Mark T., Bartsch, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of lime in the formation of reactive oxygen species (ROS), i.e.,${\rm O}_{2}^{\overline{\cdot}}$, H2O2, and OH•, from betel-quid components (extracts of areca nut and catechu) was investigated in vitro using a chemiluminescence technique and an assay for oxidative DNA damage involving analysis of 8-hydroxy-2′ -deoxyguanosine. Of the various areca-nut extracts, the catechin fraction, at alkaline pH, was shown to be the most active producer of ROS. The free Ca( OH)2content and pH of lime samples (a component of betel quid and chewing tobacco) were highly correlated with the generation of ROS from areca-nut extract in vitro and with oxidative base damage to DNA in vitro. While Fe2+had an enhancing effect on ROS formation, Mg2+had a marked inhibitory effect. The cytogenetic effects of ROS generated in vivo were measured in Syrian golden hamsters in which the cheek pouch had been painted with lime and an areca-nut extract or catechu, singly or in combination. The frequency of micronucleated cells was increased only in animals that had received both the areca-nut extract and lime. The frequency of micronucleated cells in exfoliated oral mucosal cells from Indian chewers of betel quid with tobacco containing lime or of tobacco with lime was significantly higher than in a control (no habit) group. These studies demonstrate that addition of lime to betel quid constituents generates ROS, which induce cytogenetic damage in hamster cheek pouch and may contribute to the cytogenetic damage observed in the oral cavity of betel-quid chewers. These results implicate ROS in clastogenesis and probably in the etiology of oral cancer.
ISSN:0091-6765
1552-9924
DOI:10.1289/ehp.9298203