An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications
Transposons are mobile genetic elements and have been utilized as essential tools in genetics over the years. Though highly useful, many of the current transposon-based applications suffer from various limitations, the most notable of which are: (i) transposition is performed in vivo, typically spec...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 1999-07, Vol.27 (13), p.2777-2784 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transposons are mobile genetic elements and have been utilized as essential tools in genetics over the years. Though highly useful, many of the current transposon-based applications suffer from various limitations, the most notable of which are: (i) transposition is performed in vivo, typically species specifically, and as a multistep process; (ii) accuracy and/or efficiency of the in vivoor in vitrotransposition reaction is not optimal; (iii) a limited set of target sites is used. We describe here a genetic analysis methodology that is based on bacterio-phage Mu DNA transposition and circumvents such limitations. The Mu transposon tool is composed of only a few components and utilizes a highly efficient and accurate in vitroDNA transposition reaction with a low stringency of target preference. The utility of the Mu system in functional genetic analysis is demonstrated using restriction analysis and genetic footprinting strategies. The Mu methodology is readily applicable in a variety of current and emerging transposon-based techniques and is expected to generate novel approaches to functional analysis of genes, genomes and proteins. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/27.13.2777 |