Evaluating the C-section rate of different physician practices: using machine learning to model standard practice

The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2003, Vol.2003, p.135-139
Hauptverfasser: Caruana, Rich, Niculescu, Radu S, Rao, R Bharat, Simms, Cynthia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 139
container_issue
container_start_page 135
container_title AMIA ... Annual Symposium proceedings
container_volume 2003
creator Caruana, Rich
Niculescu, Radu S
Rao, R Bharat
Simms, Cynthia
description The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to variations in the intrinsic risk of the patient sub-populations (i.e. some groups contain more "high-risk C-section" patients), or differences in physician practice (i.e. some groups do more C-sections). We apply machine learning to this problem by training models to predict standard practice from retrospective data. We then use the models of standard practice to evaluate the C-section rate of each physician practice. Our results indicate that although there is variation in intrinsic risk among the groups, there also is much variation in physician practice.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1480028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71513022</sourcerecordid><originalsourceid>FETCH-LOGICAL-p179t-442f48db3bc48e5315760d42dc65fa41899accde9397edfd65907692484cb5ed3</originalsourceid><addsrcrecordid>eNpVkF9LwzAUxYsgbk6_guTJt0LTJm3igyBj_oGBL_pcbpPbLdImXZIO9u2tOoc-3Yd7zu9wzlkyp5zLlGVVOUsuQ_jIMlZxUV4kM8qqXFAm58lutYduhGjshsQtkmUaUEXjLPEQkbiWaNO26NFGMmwPwSgDlgweJpHCcEfG8GXtQW2NRdIhePvNcqR3GjsSIlgNXp88V8l5C13A6-NdJO-Pq7flc7p-fXpZPqzTgVYypozlLRO6KRrFBPKC8qrMNMu1KnkLjAopQSmNspAV6laXXE5FZc4EUw1HXSyS-x_uMDY9ajU18NDVgzc9-EPtwNT_P9Zs643b15SJLMvFBLg9ArzbjRhi3ZugsOvAohtDXVFOiyzPJ-HN36RTxO_KxSdxzHtq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71513022</pqid></control><display><type>article</type><title>Evaluating the C-section rate of different physician practices: using machine learning to model standard practice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Caruana, Rich ; Niculescu, Radu S ; Rao, R Bharat ; Simms, Cynthia</creator><creatorcontrib>Caruana, Rich ; Niculescu, Radu S ; Rao, R Bharat ; Simms, Cynthia</creatorcontrib><description>The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to variations in the intrinsic risk of the patient sub-populations (i.e. some groups contain more "high-risk C-section" patients), or differences in physician practice (i.e. some groups do more C-sections). We apply machine learning to this problem by training models to predict standard practice from retrospective data. We then use the models of standard practice to evaluate the C-section rate of each physician practice. Our results indicate that although there is variation in intrinsic risk among the groups, there also is much variation in physician practice.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 14728149</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Artificial Intelligence ; Cesarean Section - utilization ; Decision Trees ; Female ; Humans ; Models, Statistical ; Obstetrics - statistics &amp; numerical data ; Practice Patterns, Physicians' - statistics &amp; numerical data ; Pregnancy ; Retrospective Studies ; Risk Factors</subject><ispartof>AMIA ... Annual Symposium proceedings, 2003, Vol.2003, p.135-139</ispartof><rights>This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480028/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480028/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14728149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caruana, Rich</creatorcontrib><creatorcontrib>Niculescu, Radu S</creatorcontrib><creatorcontrib>Rao, R Bharat</creatorcontrib><creatorcontrib>Simms, Cynthia</creatorcontrib><title>Evaluating the C-section rate of different physician practices: using machine learning to model standard practice</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to variations in the intrinsic risk of the patient sub-populations (i.e. some groups contain more "high-risk C-section" patients), or differences in physician practice (i.e. some groups do more C-sections). We apply machine learning to this problem by training models to predict standard practice from retrospective data. We then use the models of standard practice to evaluate the C-section rate of each physician practice. Our results indicate that although there is variation in intrinsic risk among the groups, there also is much variation in physician practice.</description><subject>Artificial Intelligence</subject><subject>Cesarean Section - utilization</subject><subject>Decision Trees</subject><subject>Female</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Obstetrics - statistics &amp; numerical data</subject><subject>Practice Patterns, Physicians' - statistics &amp; numerical data</subject><subject>Pregnancy</subject><subject>Retrospective Studies</subject><subject>Risk Factors</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF9LwzAUxYsgbk6_guTJt0LTJm3igyBj_oGBL_pcbpPbLdImXZIO9u2tOoc-3Yd7zu9wzlkyp5zLlGVVOUsuQ_jIMlZxUV4kM8qqXFAm58lutYduhGjshsQtkmUaUEXjLPEQkbiWaNO26NFGMmwPwSgDlgweJpHCcEfG8GXtQW2NRdIhePvNcqR3GjsSIlgNXp88V8l5C13A6-NdJO-Pq7flc7p-fXpZPqzTgVYypozlLRO6KRrFBPKC8qrMNMu1KnkLjAopQSmNspAV6laXXE5FZc4EUw1HXSyS-x_uMDY9ajU18NDVgzc9-EPtwNT_P9Zs643b15SJLMvFBLg9ArzbjRhi3ZugsOvAohtDXVFOiyzPJ-HN36RTxO_KxSdxzHtq</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Caruana, Rich</creator><creator>Niculescu, Radu S</creator><creator>Rao, R Bharat</creator><creator>Simms, Cynthia</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2003</creationdate><title>Evaluating the C-section rate of different physician practices: using machine learning to model standard practice</title><author>Caruana, Rich ; Niculescu, Radu S ; Rao, R Bharat ; Simms, Cynthia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p179t-442f48db3bc48e5315760d42dc65fa41899accde9397edfd65907692484cb5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Artificial Intelligence</topic><topic>Cesarean Section - utilization</topic><topic>Decision Trees</topic><topic>Female</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Obstetrics - statistics &amp; numerical data</topic><topic>Practice Patterns, Physicians' - statistics &amp; numerical data</topic><topic>Pregnancy</topic><topic>Retrospective Studies</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caruana, Rich</creatorcontrib><creatorcontrib>Niculescu, Radu S</creatorcontrib><creatorcontrib>Rao, R Bharat</creatorcontrib><creatorcontrib>Simms, Cynthia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caruana, Rich</au><au>Niculescu, Radu S</au><au>Rao, R Bharat</au><au>Simms, Cynthia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the C-section rate of different physician practices: using machine learning to model standard practice</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2003</date><risdate>2003</risdate><volume>2003</volume><spage>135</spage><epage>139</epage><pages>135-139</pages><eissn>1559-4076</eissn><abstract>The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to variations in the intrinsic risk of the patient sub-populations (i.e. some groups contain more "high-risk C-section" patients), or differences in physician practice (i.e. some groups do more C-sections). We apply machine learning to this problem by training models to predict standard practice from retrospective data. We then use the models of standard practice to evaluate the C-section rate of each physician practice. Our results indicate that although there is variation in intrinsic risk among the groups, there also is much variation in physician practice.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>14728149</pmid><tpages>5</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1559-4076
ispartof AMIA ... Annual Symposium proceedings, 2003, Vol.2003, p.135-139
issn 1559-4076
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1480028
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Artificial Intelligence
Cesarean Section - utilization
Decision Trees
Female
Humans
Models, Statistical
Obstetrics - statistics & numerical data
Practice Patterns, Physicians' - statistics & numerical data
Pregnancy
Retrospective Studies
Risk Factors
title Evaluating the C-section rate of different physician practices: using machine learning to model standard practice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20C-section%20rate%20of%20different%20physician%20practices:%20using%20machine%20learning%20to%20model%20standard%20practice&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Caruana,%20Rich&rft.date=2003&rft.volume=2003&rft.spage=135&rft.epage=139&rft.pages=135-139&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E71513022%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71513022&rft_id=info:pmid/14728149&rfr_iscdi=true