Evaluating the C-section rate of different physician practices: using machine learning to model standard practice
The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to...
Gespeichert in:
Veröffentlicht in: | AMIA ... Annual Symposium proceedings 2003, Vol.2003, p.135-139 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 139 |
---|---|
container_issue | |
container_start_page | 135 |
container_title | AMIA ... Annual Symposium proceedings |
container_volume | 2003 |
creator | Caruana, Rich Niculescu, Radu S Rao, R Bharat Simms, Cynthia |
description | The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to variations in the intrinsic risk of the patient sub-populations (i.e. some groups contain more "high-risk C-section" patients), or differences in physician practice (i.e. some groups do more C-sections). We apply machine learning to this problem by training models to predict standard practice from retrospective data. We then use the models of standard practice to evaluate the C-section rate of each physician practice. Our results indicate that although there is variation in intrinsic risk among the groups, there also is much variation in physician practice. |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1480028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71513022</sourcerecordid><originalsourceid>FETCH-LOGICAL-p179t-442f48db3bc48e5315760d42dc65fa41899accde9397edfd65907692484cb5ed3</originalsourceid><addsrcrecordid>eNpVkF9LwzAUxYsgbk6_guTJt0LTJm3igyBj_oGBL_pcbpPbLdImXZIO9u2tOoc-3Yd7zu9wzlkyp5zLlGVVOUsuQ_jIMlZxUV4kM8qqXFAm58lutYduhGjshsQtkmUaUEXjLPEQkbiWaNO26NFGMmwPwSgDlgweJpHCcEfG8GXtQW2NRdIhePvNcqR3GjsSIlgNXp88V8l5C13A6-NdJO-Pq7flc7p-fXpZPqzTgVYypozlLRO6KRrFBPKC8qrMNMu1KnkLjAopQSmNspAV6laXXE5FZc4EUw1HXSyS-x_uMDY9ajU18NDVgzc9-EPtwNT_P9Zs643b15SJLMvFBLg9ArzbjRhi3ZugsOvAohtDXVFOiyzPJ-HN36RTxO_KxSdxzHtq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71513022</pqid></control><display><type>article</type><title>Evaluating the C-section rate of different physician practices: using machine learning to model standard practice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Caruana, Rich ; Niculescu, Radu S ; Rao, R Bharat ; Simms, Cynthia</creator><creatorcontrib>Caruana, Rich ; Niculescu, Radu S ; Rao, R Bharat ; Simms, Cynthia</creatorcontrib><description>The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to variations in the intrinsic risk of the patient sub-populations (i.e. some groups contain more "high-risk C-section" patients), or differences in physician practice (i.e. some groups do more C-sections). We apply machine learning to this problem by training models to predict standard practice from retrospective data. We then use the models of standard practice to evaluate the C-section rate of each physician practice. Our results indicate that although there is variation in intrinsic risk among the groups, there also is much variation in physician practice.</description><identifier>EISSN: 1559-4076</identifier><identifier>PMID: 14728149</identifier><language>eng</language><publisher>United States: American Medical Informatics Association</publisher><subject>Artificial Intelligence ; Cesarean Section - utilization ; Decision Trees ; Female ; Humans ; Models, Statistical ; Obstetrics - statistics & numerical data ; Practice Patterns, Physicians' - statistics & numerical data ; Pregnancy ; Retrospective Studies ; Risk Factors</subject><ispartof>AMIA ... Annual Symposium proceedings, 2003, Vol.2003, p.135-139</ispartof><rights>This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480028/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480028/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14728149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caruana, Rich</creatorcontrib><creatorcontrib>Niculescu, Radu S</creatorcontrib><creatorcontrib>Rao, R Bharat</creatorcontrib><creatorcontrib>Simms, Cynthia</creatorcontrib><title>Evaluating the C-section rate of different physician practices: using machine learning to model standard practice</title><title>AMIA ... Annual Symposium proceedings</title><addtitle>AMIA Annu Symp Proc</addtitle><description>The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to variations in the intrinsic risk of the patient sub-populations (i.e. some groups contain more "high-risk C-section" patients), or differences in physician practice (i.e. some groups do more C-sections). We apply machine learning to this problem by training models to predict standard practice from retrospective data. We then use the models of standard practice to evaluate the C-section rate of each physician practice. Our results indicate that although there is variation in intrinsic risk among the groups, there also is much variation in physician practice.</description><subject>Artificial Intelligence</subject><subject>Cesarean Section - utilization</subject><subject>Decision Trees</subject><subject>Female</subject><subject>Humans</subject><subject>Models, Statistical</subject><subject>Obstetrics - statistics & numerical data</subject><subject>Practice Patterns, Physicians' - statistics & numerical data</subject><subject>Pregnancy</subject><subject>Retrospective Studies</subject><subject>Risk Factors</subject><issn>1559-4076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkF9LwzAUxYsgbk6_guTJt0LTJm3igyBj_oGBL_pcbpPbLdImXZIO9u2tOoc-3Yd7zu9wzlkyp5zLlGVVOUsuQ_jIMlZxUV4kM8qqXFAm58lutYduhGjshsQtkmUaUEXjLPEQkbiWaNO26NFGMmwPwSgDlgweJpHCcEfG8GXtQW2NRdIhePvNcqR3GjsSIlgNXp88V8l5C13A6-NdJO-Pq7flc7p-fXpZPqzTgVYypozlLRO6KRrFBPKC8qrMNMu1KnkLjAopQSmNspAV6laXXE5FZc4EUw1HXSyS-x_uMDY9ajU18NDVgzc9-EPtwNT_P9Zs643b15SJLMvFBLg9ArzbjRhi3ZugsOvAohtDXVFOiyzPJ-HN36RTxO_KxSdxzHtq</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Caruana, Rich</creator><creator>Niculescu, Radu S</creator><creator>Rao, R Bharat</creator><creator>Simms, Cynthia</creator><general>American Medical Informatics Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2003</creationdate><title>Evaluating the C-section rate of different physician practices: using machine learning to model standard practice</title><author>Caruana, Rich ; Niculescu, Radu S ; Rao, R Bharat ; Simms, Cynthia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p179t-442f48db3bc48e5315760d42dc65fa41899accde9397edfd65907692484cb5ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Artificial Intelligence</topic><topic>Cesarean Section - utilization</topic><topic>Decision Trees</topic><topic>Female</topic><topic>Humans</topic><topic>Models, Statistical</topic><topic>Obstetrics - statistics & numerical data</topic><topic>Practice Patterns, Physicians' - statistics & numerical data</topic><topic>Pregnancy</topic><topic>Retrospective Studies</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caruana, Rich</creatorcontrib><creatorcontrib>Niculescu, Radu S</creatorcontrib><creatorcontrib>Rao, R Bharat</creatorcontrib><creatorcontrib>Simms, Cynthia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>AMIA ... Annual Symposium proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caruana, Rich</au><au>Niculescu, Radu S</au><au>Rao, R Bharat</au><au>Simms, Cynthia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the C-section rate of different physician practices: using machine learning to model standard practice</atitle><jtitle>AMIA ... Annual Symposium proceedings</jtitle><addtitle>AMIA Annu Symp Proc</addtitle><date>2003</date><risdate>2003</risdate><volume>2003</volume><spage>135</spage><epage>139</epage><pages>135-139</pages><eissn>1559-4076</eissn><abstract>The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to variations in the intrinsic risk of the patient sub-populations (i.e. some groups contain more "high-risk C-section" patients), or differences in physician practice (i.e. some groups do more C-sections). We apply machine learning to this problem by training models to predict standard practice from retrospective data. We then use the models of standard practice to evaluate the C-section rate of each physician practice. Our results indicate that although there is variation in intrinsic risk among the groups, there also is much variation in physician practice.</abstract><cop>United States</cop><pub>American Medical Informatics Association</pub><pmid>14728149</pmid><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1559-4076 |
ispartof | AMIA ... Annual Symposium proceedings, 2003, Vol.2003, p.135-139 |
issn | 1559-4076 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1480028 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Artificial Intelligence Cesarean Section - utilization Decision Trees Female Humans Models, Statistical Obstetrics - statistics & numerical data Practice Patterns, Physicians' - statistics & numerical data Pregnancy Retrospective Studies Risk Factors |
title | Evaluating the C-section rate of different physician practices: using machine learning to model standard practice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20C-section%20rate%20of%20different%20physician%20practices:%20using%20machine%20learning%20to%20model%20standard%20practice&rft.jtitle=AMIA%20...%20Annual%20Symposium%20proceedings&rft.au=Caruana,%20Rich&rft.date=2003&rft.volume=2003&rft.spage=135&rft.epage=139&rft.pages=135-139&rft.eissn=1559-4076&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E71513022%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71513022&rft_id=info:pmid/14728149&rfr_iscdi=true |