Evaluating the C-section rate of different physician practices: using machine learning to model standard practice

The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2003, Vol.2003, p.135-139
Hauptverfasser: Caruana, Rich, Niculescu, Radu S, Rao, R Bharat, Simms, Cynthia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The C-section rate of a population of 22,175 expectant mothers is 16.8%; yet the 17 physician groups that serve this population have vastly different group C-section rates, ranging from 13% to 23%. Our goal is to determine retrospectively if the variations in the observed rates can be attributed to variations in the intrinsic risk of the patient sub-populations (i.e. some groups contain more "high-risk C-section" patients), or differences in physician practice (i.e. some groups do more C-sections). We apply machine learning to this problem by training models to predict standard practice from retrospective data. We then use the models of standard practice to evaluate the C-section rate of each physician practice. Our results indicate that although there is variation in intrinsic risk among the groups, there also is much variation in physician practice.
ISSN:1559-4076