Endosomal hyperacidification in cystic fibrosis is due to defective nitric oxide-cylic GMP signalling cascade
Endosomal hyperacidification in cystic fibrosis (CF) respiratory epithelial cells is secondary to a loss of sodium transport control owing to a defective form of the CF transmembrane conductance regulator CFTR. Here, we show that endosomal hyperacidification can be corrected by activating the signal...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2006-05, Vol.7 (5), p.553-559 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Endosomal hyperacidification in cystic fibrosis (CF) respiratory epithelial cells is secondary to a loss of sodium transport control owing to a defective form of the CF transmembrane conductance regulator CFTR. Here, we show that endosomal hyperacidification can be corrected by activating the signalling cascade controlling sodium channels through cyclic GMP. Nitric oxide (NO) donors corrected the endosomal hyperacidification in CF cells. Stimulation of CF cells with guanylate cyclase agonists corrected the pH in endosomes. Exposure of CF cells to an inhibitor of cGMP‐specific phosphodiesterase PDE5, Sildenafil, normalized the endosomal pH. Treatment with Sildenafil reduced secretion by CF cells of the proinflammatory chemokine interleukin 8 following stimulation with
Pseudomonas aeruginosa
products. Thus, the endosomal hyperacidification and excessive proinflammatory response in CF are in part due to deficiencies in NO‐ and cGMP‐regulated processes and can be pharmacologically reversed using PDE5 inhibitors. |
---|---|
ISSN: | 1469-221X 1469-3178 1469-221X |
DOI: | 10.1038/sj.embor.7400674 |