The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator
The identification of ultraconserved noncoding sequences in vertebrates has been associated with developmental regulators and DNA-binding proteins. One of the first of these was identified in the intergenic region between the Dlx-5 and Dlx-6 genes, members of the Dlx/dll homeodomain-containing prote...
Gespeichert in:
Veröffentlicht in: | Genes & development 2006-06, Vol.20 (11), p.1470-1484 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The identification of ultraconserved noncoding sequences in vertebrates has been associated with developmental regulators and DNA-binding proteins. One of the first of these was identified in the intergenic region between the Dlx-5 and Dlx-6 genes, members of the Dlx/dll homeodomain-containing protein family. In previous experiments, we showed that Sonic hedgehog treatment of forebrain neural explants results in the activation of Dlx-2 and the novel noncoding RNA (ncRNA), Evf-1. In this report, we show that the Dlx-5/6 ultraconserved region is transcribed to generate an alternatively spliced form of Evf-1, the ncRNA Evf-2. Evf-2 specifically cooperates with Dlx-2 to increase the transcriptional activity of the Dlx-5/6 enhancer in a target and homeodomain-specific manner. A stable complex containing the Evf-2 ncRNA and the Dlx-2 protein forms in vivo, suggesting that the Evf-2 ncRNA activates transcriptional activity by directly influencing Dlx-2 activity. These experiments identify a novel mechanism whereby transcription is controlled by the cooperative actions of an ncRNA and a homeodomain protein. The possibility that a subset of vertebrate ultraconserved regions may function at both the DNA and RNA level to control key developmental regulators may explain why ultraconserved sequences exhibit 90% or more conservation even after 450 million years of vertebrate evolution. |
---|---|
ISSN: | 0890-9369 1549-5477 |
DOI: | 10.1101/gad.1416106 |