Mechanism of Asbestos-Mediated DNA Damage: Role of Heme and Heme Proteins
Several observations, including studies from this laboratory, demonstrate that asbestos generates free radicals in the biological system that may play a role in the manifestation of asbestos-related cytotoxicity and carcinogenicity. It has also been demonstrated that iron associated with asbestos pl...
Gespeichert in:
Veröffentlicht in: | Environmental health perspectives 1997-09, Vol.105 (suppl 5), p.1109-1112 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several observations, including studies from this laboratory, demonstrate that asbestos generates free radicals in the biological system that may play a role in the manifestation of asbestos-related cytotoxicity and carcinogenicity. It has also been demonstrated that iron associated with asbestos plays an important role in the asbestos-mediated generation of reactive oxygen species. Exposure to asbestos leads to degradation of heme proteins such as cytochrome P450-releasing heme in cytosol. Our simulation experiments in the presence of heme show that such asbestos-released heme may increase lipid peroxidation and can cause DNA damage. Further, heme and horseradish peroxidase (HRP) can cause extensive DNA damage in the presence of asbestos and hydrogen peroxide/organic peroxide/hydroperoxides. HRP catalyzes oxidation reactions in a manner similar to that of prostaglandin H synthetase. Iron released from asbestos is only partially responsible for DNA damage. However, our studies indicate that DNA damage mediated by asbestos in vivo may be caused by a combination of effects such as the release and participation of iron, heme, and heme moiety of prostaglandin H synthetase in free radical generation from peroxides and hydroperoxides. |
---|---|
ISSN: | 0091-6765 1552-9924 |
DOI: | 10.1289/ehp.97105s51109 |