Brief expression of a GFP cre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletions

The Cre DNA recombinase of bacteriophage P1 has become a useful tool for precise genomic manipulation in embryonic stem (ES) cells that have been gene modified by homologous recombination. We have re-engineered the cre gene to allow ready identification of living Cre+cells by constructing a function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 1997-08, Vol.25 (16), p.3326-3331
Hauptverfasser: Gagneten, S, Le, Y, Miller, J, Sauer, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Cre DNA recombinase of bacteriophage P1 has become a useful tool for precise genomic manipulation in embryonic stem (ES) cells that have been gene modified by homologous recombination. We have re-engineered the cre gene to allow ready identification of living Cre+cells by constructing a functional fusion between Cre and an enhanced green fluorescent protein from Aequorea victoria (GFPS65T). The GFP cre fusion gene product rapidly targeted the nucleus in the absence of any exogenous nuclear localization signal. Moreover, GFPCre catalyzed efficient DNA recombination in both a mouse 3T3 derivative cell line and in murine ES cells. Fluorescence- activated cell sorting (FACS) of transiently GFP cre -transfected ES cells not only allowed rapid and efficient isolation of Cre+cells after DNA transfection but also demonstrated that a burst of Cre expression is sufficient to commit cells to Cre-mediated 'pop-out' of loxP -tagged DNA from the genome. Thus, GFP cre allows rapid identification of living cells in which loxP - flanked DNA sequences are destined to be removed from the genome by Cre-mediated recombination without reliance on recombinational activation or inactivation of a marker gene at the target locus. In addition, the GFP cre fusion gene will prove useful in tracing tissue-specific Cre expression in transgenic animals, thereby facilitating the generation and analysis of conditional gene knockout mice.
ISSN:0305-1048
1362-4962
1362-4962
DOI:10.1093/nar/25.16.3326