Microfabricated Bioprocessor for Integrated Nanoliter-Scale Sanger DNA Sequencing
An efficient, nanoliter-scale microfabricated bioprocessor integrating all three Sanger sequencing steps, thermal cycling, sample purification, and capillary electrophoresis, has been developed and evaluated. Hybrid glass-polydimethylsiloxane (PDMS) wafer-scale construction is used to combine 250-nl...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2006-05, Vol.103 (19), p.7240-7245 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An efficient, nanoliter-scale microfabricated bioprocessor integrating all three Sanger sequencing steps, thermal cycling, sample purification, and capillary electrophoresis, has been developed and evaluated. Hybrid glass-polydimethylsiloxane (PDMS) wafer-scale construction is used to combine 250-nl reactors, affinity-capture purification chambers, high-performance capillary electrophoresis channels, and pneumatic valves and pumps onto a single microfabricated device. Lab-on-a-chip-level integration enables complete Sanger sequencing from only 1 fmol of DNA template. Up to 556 continuous bases were sequenced with 99% accuracy, demonstrating read lengths required for de novo sequencing of human and other complex genomes. The performance of this miniaturized DNA sequencer provides a benchmark for predicting the ultimate cost and efficiency limits of Sanger sequencing. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0602476103 |