Experimental Autoimmune Encephalomyelitis Disrupts Endocannabinoid-Mediated Neuroprotection
Focal cerebral ischemia and traumatic brain injury induce an escalating amount of cell death because of harmful mediators diffusing from the original lesion site. Evidence suggests that healthy cells surrounding these lesions attempt to protect themselves by producing endocannabinoids (eCBs) and act...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2006-04, Vol.103 (16), p.6362-6367 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Focal cerebral ischemia and traumatic brain injury induce an escalating amount of cell death because of harmful mediators diffusing from the original lesion site. Evidence suggests that healthy cells surrounding these lesions attempt to protect themselves by producing endocannabinoids (eCBs) and activating cannabinoid receptors, the molecular target for marijuana-derived compounds. Indeed, activation of cannabinoid receptors reduces the production and diffusion of harmful mediators. Here, we provide evidence that an exception to this pattern is found in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. We show that cell damage induced by EAE does not lead to increase in eCBs, even though cannabinoid receptors are functional because synthetic cannabinoid agonists are known to confine EAE-induced lesions. This lack of eCB increase is likely due to IFN-γ, which is released by primed T cells invading the CNS. We show that IFN-γ disrupts the functionality of purinergic P2X₇; receptors, a key step controlling eCB production by microglia, the main source of eCBs in brain. Accordingly, induction of EAE in$P2X_{7}^{-/-}$mice results in even lower eCB levels and more pronounced cell damage than in wild-type mice. Our data suggest that the high level of CNS IFN-γ associated with EAE disrupts eCBmediated neuroprotection while maintaining functional cannabinoid receptors, thus providing additional support for the use of cannabinoid-based medicine to treat multiple sclerosis. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.0510418103 |