Pollen profilin function depends on interaction with proline-rich motifs

The actin binding protein profilin has dramatic effects on actin polymerization in vitro and in living cells. Plants have large multigene families encoding profilins, and many cells or tissues can express multiple profilin isoforms. Recently, we characterized several profilin isoforms from maize pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 1998-06, Vol.10 (6), p.981-993
Hauptverfasser: Gibbon, B.C. (Purdue University, West Lafayette, IN.), Zonia, L.E, Kovar, D.R, Hussey, P.J, Staiger, C.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The actin binding protein profilin has dramatic effects on actin polymerization in vitro and in living cells. Plants have large multigene families encoding profilins, and many cells or tissues can express multiple profilin isoforms. Recently, we characterized several profilin isoforms from maize pollen for their ability to alter cytoarchitecture when microinjected into living plant cells and for their association with poly-L-proline and monomeric actin from maize pollen. In this study, we characterize a new profilin isoform from maize, which has been designated ZmPRO4, that is expressed predominantly in endosperm but is also found at low levels in all tissues examined, including mature and germinated pollen. The affinity of ZmPRO4 for monomeric actin, which was measured by two independent methods, is similar to that of the three profilin isoforms previously identified in pollen. In contrast, the affinity of ZmPRO4 for poly-L-proline is nearly twofold higher than that of native pollen profilin and the other recombinant profilin isoforms. When ZmPRO4 was microinjected into plant cells, the effect on actin-dependent nuclear position was significantly more rapid than that of another pollen profilin isoform, ZmPRO1. A gain-of-function mutant (ZmPRO1-Y6F) was created and found to enhance poly-L-proline binding activity and to disrupt cytoarchitecture as effectively as ZmPRO4. In this study, we demonstrate that profilin isoforms expressed in a single cell can have different effects on actin in living cells and that the poly-L-proline binding function of profilin may have important consequences for the regulation of actin cytoskeletal dynamics in plant cells.
ISSN:1040-4651
1532-298X
DOI:10.1105/tpc.10.6.981