Geometry for the Primary Electron Donor and the Bacteriopheophytin Acceptor in Rhodopseudomonas viridis Photosynthetic Reaction Centers

The tetrapyrrole electron donors and acceptors (bacteriochlorophyll, BCh; bacteriopheophytin, BPh) within the bacterial photosynthetic reaction center (RC) are arranged with a specific geometry that permits rapid (picosecond time scale) electron tunneling to occur between them. Here we have measured...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1985-03, Vol.47 (3), p.443-447
Hauptverfasser: Tiede, D.M., Choquet, Y., Breton, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tetrapyrrole electron donors and acceptors (bacteriochlorophyll, BCh; bacteriopheophytin, BPh) within the bacterial photosynthetic reaction center (RC) are arranged with a specific geometry that permits rapid (picosecond time scale) electron tunneling to occur between them. Here we have measured the angle between the molecular planes of the bacteriochlorophyll dimer (primary donor), B 2, and the acceptor bacteriopheophytin, H, by analyzing the dichroism of the absorption change associated with H reduction, formed by photoselection with RCs of Rhodopseudomonas viridis. This angle between molecular planes is found to be 60° ± 2. This means that the ultrafast electron tunneling must occur between donors and acceptors that are fixed by the protein to have a noncoplanar alignment. Nearly perpendicular alignments have been determined for other electron tunneling complexes involving RCs. These geometries can be contrasted with models proposed for heme-heme electron transfer complexes, which have emphasized that mutually parallel orientations should permit the most kinetically facile transfers.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(85)83936-9