Arabidopsis TEBICHI, with Helicase and DNA Polymerase Domains, Is Required for Regulated Cell Division and Differentiation in Meristems
In plant meristems, each cell divides and differentiates in a spatially and temporally regulated manner, and continuous organogenesis occurs using cells derived from the meristem. We report the identification of the Arabidopsis thaliana TEBICHI (TEB) gene, which is required for regulated cell divisi...
Gespeichert in:
Veröffentlicht in: | The Plant cell 2006-04, Vol.18 (4), p.879-892 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In plant meristems, each cell divides and differentiates in a spatially and temporally regulated manner, and continuous organogenesis occurs using cells derived from the meristem. We report the identification of the Arabidopsis thaliana TEBICHI (TEB) gene, which is required for regulated cell division and differentiation in meristems. The teb mutants show morphological defects, such as short roots, serrated leaves, and fasciation, as well as defective patterns of cell division and differentiation in the meristem. The TEB gene encodes a homolog of Drosophila MUS308 and mammalian DNA polymerase {theta}, which prevent spontaneous or DNA damage-induced production of DNA double strand breaks. As expected from the function of animal homologs, teb mutants show constitutively activated DNA damage responses. Unlike other fasciation mutants with activated DNA damage responses, however, teb mutants do not activate transcriptionally silenced genes. teb shows an accumulation of cells expressing cyclinB1;1:GUS in meristems, suggesting that constitutively activated DNA damage responses in teb lead to a defect in G2/M cell cycle progression. Furthermore, other fasciation mutants, such as fasciata2 and tonsoku/mgoun3/brushy1, also show an accumulation of cells expressing cyclinB1;1:GUS in meristems. These results suggest that cell cycle progression at G2/M is important for the regulation of the pattern of cell division and of differentiation during plant development. |
---|---|
ISSN: | 1532-298X 1040-4651 1532-298X |
DOI: | 10.1105/tpc.105.036798 |