The Molecular Basis of Individual Differences in Phenylthiocarbamide and Propylthiouracil Bitterness Perception

Individual differences in perception are ubiquitous within the chemical senses: taste, smell, and chemical somesthesis [1–4]. A hypothesis of this fact states that polymorphisms in human sensory receptor genes could alter perception by coding for functionally distinct receptor types [1, 5–8]. We hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2005-02, Vol.15 (4), p.322-327
Hauptverfasser: Bufe, Bernd, Breslin, Paul A.S., Kuhn, Christina, Reed, Danielle R., Tharp, Christopher D., Slack, Jay P., Kim, Un-Kyung, Drayna, Dennis, Meyerhof, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Individual differences in perception are ubiquitous within the chemical senses: taste, smell, and chemical somesthesis [1–4]. A hypothesis of this fact states that polymorphisms in human sensory receptor genes could alter perception by coding for functionally distinct receptor types [1, 5–8]. We have previously reported evidence that sequence variants in a presumptive bitter receptor gene (hTAS2R38) correlate with differences in bitterness recognition of phenylthiocarbamide (PTC) [9–11]. Here, we map individual psychogenomic pathways for bitter taste by testing people with a variety of psychophysical tasks and linking their individual perceptions of the compounds PTC and propylthiouracil (PROP) to the in vitro responses of their TAS2R38 receptor variants. Functional expression studies demonstrate that five different haplotypes from the hTAS2R38 gene code for operatively distinct receptors. The responses of the three haplotypes we also tested in vivo correlate strongly with individuals' psychophysical bitter sensitivities to a family of compounds. These data provide a direct molecular link between heritable variability in bitter taste perception to functional variations of a single G protein coupled receptor that responds to compounds such as PTC and PROP that contain the N-C=S moiety. The molecular mechanisms of perceived bitterness variability have therapeutic implications, such as helping patients to consume beneficial bitter-tasting compounds—for example, pharmaceuticals and selected phytochemicals.
ISSN:0960-9822
1879-0445
DOI:10.1016/j.cub.2005.01.047