De novo Designed Peptide-Based Amyloid Fibrils

Identification of therapeutic strategies to prevent or cure diseases associated with amyloid fibril deposition in tissue (Alzheimer's disease, spongiform encephalopathies, etc.) requires a rational understanding of the driving forces involved in the formation of these organized assemblies rich...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-12, Vol.99 (25), p.16052-16057
Hauptverfasser: de la Paz, Manuela López, Goldie, Kenneth, Zurdo, Jesús, Lacroix, Emmanuel, Dobson, Christopher M., Hoenger, Andreas, Serrano, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Identification of therapeutic strategies to prevent or cure diseases associated with amyloid fibril deposition in tissue (Alzheimer's disease, spongiform encephalopathies, etc.) requires a rational understanding of the driving forces involved in the formation of these organized assemblies rich in β-sheet structure. To this end, we used a computer-designed algorithm to search for hexapeptide sequences with a high propensity to form homopolymeric β-sheets. Sequences predicted to be highly favorable on this basis were found experimentally to self-associate efficiently into β-sheets, whereas point mutations predicted to be unfavorable for this structure inhibited polymerization. However, the property to form polymeric β-sheets is not a sufficient requirement for fibril formation because, under the conditions used here, preformed β-sheets from these peptides with charged residues form well defined fibrils only if the total net charge of the molecule is ±1. This finding illustrates the delicate balance of interactions involved in the formation of fibrils relative to more disordered aggregates. The present results, in conjunction with x-ray fiber diffraction, electron microscopy, and Fourier transform infrared measurements, have allowed us to propose a detailed structural model of the fibrils.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.252340199