Effect of divalent cations on potassium conductance of squid axons: determination of surface charge
Potassium conductance-voltage curves have been determined for a squid axon in high external potassium solution for a wide range of divalent cation concentrations. A decrease in divalent ion concentration shifts the conductance-voltage curve along the voltage axis in the direction of more hyperpolari...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1969-03, Vol.9 (3), p.447-463 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Potassium conductance-voltage curves have been determined for a squid axon in high external potassium solution for a wide range of divalent cation concentrations. A decrease in divalent ion concentration shifts the conductance-voltage curve along the voltage axis in the direction of more hyperpolarized voltages by as much as 9 mv for an e-fold change in concentration. When the divalent ion concentration is less than about 5 mM, a further decrease does not cause a significant shift of the conductance-voltage curve. These results can be explained by assuming that on the outer surface of the membrane there is a negative fixed charge which can bind calcium ions, and that the axon is sensitive to the resulting double-layer potential. From our data, the best value for charge density was found to be one electronic charge per 120 square angstroms, and a lower limit to be one electronic charge per 280 square angstroms. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(69)86396-4 |