Low-threshold exocytosis induced by cAMP-recruited CaV3.2 (alpha1H) channels in rat chromaffin cells
We have studied the functional role of CaV3 channels in triggering fast exocytosis in rat chromaffin cells (RCCs). CaV3 T-type channels were selectively recruited by chronic exposures to cAMP (3 days) via an exchange protein directly activated by cAMP (Epac)-mediated pathway. Here we show that cAMP-...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2006-03, Vol.90 (5), p.1830-1841 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have studied the functional role of CaV3 channels in triggering fast exocytosis in rat chromaffin cells (RCCs). CaV3 T-type channels were selectively recruited by chronic exposures to cAMP (3 days) via an exchange protein directly activated by cAMP (Epac)-mediated pathway. Here we show that cAMP-treated cells had increased secretory responses, which could be evoked even at very low depolarizations (-50, -40 mV). Potentiation of exocytosis in cAMP-treated cells did not occur in the presence of 50 microM Ni2+, which selectively blocks T-type currents in RCCs. This suggests that the "low-threshold exocytosis" induced by cAMP is due to increased Ca2+ influx through cAMP-recruited T-type channels, rather than to an enhanced secretion downstream of Ca2+ entry, as previously reported for short-term cAMP treatments (20 min). Newly recruited T-type channels increase the fast secretory response at low voltages without altering the size of the immediately releasable pool. They also preserve the Ca2+ dependence of exocytosis, the initial speed of vesicle depletion, and the mean quantal size of single secretory events. All this indicates that cAMP-recruited CaV3 channels enhance the secretory activity of RCCs at low voltages by coupling to the secretory apparatus with a Ca2+ efficacy similar to that of already existing high-threshold Ca2+ channels. Finally, using RT-PCRs we found that the fast inactivating low-threshold Ca2+ current component recruited by cAMP is selectively associated to the alpha1H (CaV3.2) channel isoform. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1529/biophysj.105.071647 |