A method to attenuate pneumoperitoneum-induced reductions in splanchnic blood flow

To determine if increasing nitric oxide bioactivity by inclusion of ethyl nitrite (ENO) in the insufflation admixture would attenuate pneumoperitoneum-induced decreases in splanchnic perfusion. Organ blood flow is reduced during pneumoperitoneum and can contribute to laparoscopy-associated morbidity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of surgery 2005-02, Vol.241 (2), p.256-261
Hauptverfasser: NISHATH ATHAR ALI, EUBANKS, W. Steve, STAMLER, Jonathan S, GOW, Andrew J, LAGOO-DEENADAYALAN, Sandhya A, VILLEGAS, Leonardo, EL-MOALEM, Habib E, REYNOLDS, James D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To determine if increasing nitric oxide bioactivity by inclusion of ethyl nitrite (ENO) in the insufflation admixture would attenuate pneumoperitoneum-induced decreases in splanchnic perfusion. Organ blood flow is reduced during pneumoperitoneum and can contribute to laparoscopy-associated morbidity and mortality. Previous attempts to control such decreases in flow have been ineffective. Laser-Doppler flow probes were placed on the liver and right kidney of anesthetized pigs. After a baseline recording period, animals were insufflated to a final intraperitoneal pressure of 15 mm Hg. Group one received CO2 (standard practice), whereas group 2 received CO2 plus 100 ppm ENO. Insufflation was maintained for 60 minutes and then the abdomen was manually deflated; monitoring was continued for another 60 minutes. CO2 insufflation (n = 5) cut liver blood flow in half; liver flow remained at this level throughout the postinsufflation period. Inclusion of 100 ppm ENO (n = 6) attenuated both the acute and prolonged blood flow decreases. Statistical modeling of the data showed that, on average, liver blood flow was 14.3 U/min higher in the ENO pigs compared with the CO2 group (P = 0.0454). In contrast, neither treatment significantly altered kidney blood flow (P = 0.6215). The data indicate that ENO can effectively attenuate pneumoperitoneum-induced blood flow decreases within the peritoneal cavity. The result suggests a novel therapeutic method of regulating hemodynamic changes during laparoscopic procedures.
ISSN:0003-4932
1528-1140
DOI:10.1097/01.sla.0000153034.54128.5e