Transcript Analysis of Early Nodulation Events in Medicago truncatula

Within the first 72 h of the interaction between rhizobia and their host plants, nodule primordium induction and infection occur. We predicted that transcription profiling of early stages of the symbiosis between Medicago truncatula roots and Sinorhizobium meliloti would identify regulated plant gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2006-01, Vol.140 (1), p.221-234
Hauptverfasser: Lohar, Dasharath Prasad, Sharopova, Natalya, Endre, Gabriella, Penuela, Silvia, Samac, Deborah, Town, Christopher, Silverstein, Kevin A.T, VandenBosch, Kathryn A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within the first 72 h of the interaction between rhizobia and their host plants, nodule primordium induction and infection occur. We predicted that transcription profiling of early stages of the symbiosis between Medicago truncatula roots and Sinorhizobium meliloti would identify regulated plant genes that likely condition key events in nodule initiation. Therefore, using a microarray with about 6,000 cDNAs, we compared transcripts from inoculated and uninoculated roots corresponding to defined stages between 1 and 72 h post inoculation (hpi). Hundreds of genes of both known and unknown function were significantly regulated at these time points. Four stages of the interaction were recognized based on gene expression profiles, and potential marker genes for these stages were identified. Some genes that were regulated differentially during stages I (1 hpi) and II (6-12 hpi) of the interaction belong to families encoding proteins involved in calcium transport and binding, reactive oxygen metabolism, and cytoskeleton and cell wall functions. Genes involved in cell proliferation were found to be up-regulated during stages III (24-48 hpi) and IV (72 hpi). Many genes that are homologs of defense response genes were up-regulated during stage I but down-regulated later, likely facilitating infection thread progression into the root cortex. Additionally, genes putatively involved in signal transduction and transcriptional regulation were found to be differentially regulated in the inoculated roots at each time point. The findings shed light on the complexity of coordinated gene regulation and will be useful for continued dissection of the early steps in symbiosis.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.105.070326