Giα and Gβ Subunits Both Define Selectivity of G Protein Activation by α2-Adrenergic Receptors

Previous studies of the specificity of receptor interactions with G protein subunits in living cells have relied on measurements of second messengers or other downstream responses. We have examined the selectivity of interactions between α2-adrenergic receptors (α2R) and various combinations of Giα...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-01, Vol.103 (1), p.212-217
Hauptverfasser: Gibson, Scott K., Gilman, Alfred G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous studies of the specificity of receptor interactions with G protein subunits in living cells have relied on measurements of second messengers or other downstream responses. We have examined the selectivity of interactions between α2-adrenergic receptors (α2R) and various combinations of Giα and Gβ subunit isoforms by measuring changes in FRET between Giα-yellow fluorescent protein and cyan fluorescent protein-Gβ chimeras in HeLa cells. All combinations of Giα1, -2, or -3 with Gβ1, -2, or -4 were activated to some degree by endogenous α2Rs as judged by agonist-dependent decreases in FRET. The degree of G protein activation is determined by the combination of Giα and Gβ subunits rather than by the identity of an individual subunit. RT-PCR analysis and small interfering RNA knockdown of α2R subtypes, followed by quantification of radiolabeled antagonist binding, demonstrated that HeLa cells express α2a- and α2b-adrenergic receptor isoforms in a 2:1 ratio. Increasing receptor number by overexpression of the α2aR subtype minimized the differences among coupling preferences for Giα and Gβ isoforms. The molecular properties of each Giα, Gβ, and α2-adrenergic receptor subtype influence signaling efficiency for the α2-adrenergic receptormediated signaling pathway.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0509763102