Interaction of the Neuropeptide Met-Enkephalin with Zwitterionic and Negatively Charged Bicelles as Viewed by 31P and 2H Solid-State NMR

The interaction of the neuropeptide methionine-enkephalin (Menk) with bicelles was investigated by solid-state NMR. Bicelles composed of dimyristoylphosphatidylcholine (DMPC) and dicaproylphosphatidylcholine (DCPC) were modified to investigate the effect of the lipid headgroup and electrostatic char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2003-07, Vol.85 (1), p.328-339
Hauptverfasser: Marcotte, Isabelle, Dufourc, Erick J., Ouellet, Marise, Auger, Michèle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The interaction of the neuropeptide methionine-enkephalin (Menk) with bicelles was investigated by solid-state NMR. Bicelles composed of dimyristoylphosphatidylcholine (DMPC) and dicaproylphosphatidylcholine (DCPC) were modified to investigate the effect of the lipid headgroup and electrostatic charges on the association with Menk. A total of 10 mol % of DMPC was replaced by zwitterionic phosphatidylethanolamine (DMPE), anionic phosphatidylglycerol (DMPG), or phosphatidylserine (DMPS). The preparation of DMPE-doped bicelles (Bic/PE) is reported for the first time. The 31P and 2H NMR results revealed changes in the lipid dynamics when Menk interacts with the bicellar systems. 2H NMR experiments showed a disordering effect of Menk on the lipid chains in all the bicelles except Bic/PG, whereas the study of the choline headgroups indicated a decreased order of the lipids only in Bic/PE and Bic/PG. Our results suggest that the insertion depth of Menk into bicelles is modulated by their composition, more specifically by the balance between hydrophobic and electrostatic interactions. Menk would be buried at the lipid polar/apolar interface, the depth of penetration into the hydrophobic membrane core following the scaling Bic > Bic/PE > Bic/PS at the slightly acidic pH used in this study. The peptide would not insert into the bilayer core of Bic/PG and would rather remain at the surface.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(03)74477-4