Differential effects of voltage-dependent inactivation and local anesthetics on kinetic phases of Ca2+ release in frog skeletal muscle
In voltage-clamped frog skeletal muscle fibers, Ca(2+) release rises rapidly to a peak, then decays to a nearly steady state. The voltage dependence of the ratio of amplitudes of these two phases (p/s) shows a maximum at low voltages and declines with further depolarization. The peak phase has been...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2003-07, Vol.85 (1), p.245-254 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In voltage-clamped frog skeletal muscle fibers, Ca(2+) release rises rapidly to a peak, then decays to a nearly steady state. The voltage dependence of the ratio of amplitudes of these two phases (p/s) shows a maximum at low voltages and declines with further depolarization. The peak phase has been attributed to a component of Ca(2+) release induced by Ca(2+), which is proportionally greater at low voltages. We compared the effects of two interventions that inhibit Ca(2+) release: inactivation of voltage sensors, and local anesthetics reputed to block Ca(2+) release induced by Ca(2+). Holding the cells partially depolarized strongly reduced the peak and steady levels of Ca(2+) release elicited by a test pulse and suppressed the maximum of the p/s ratio at low voltages. The p/s ratio increased monotonically with test voltage, eventually reaching a value similar to the maximum found in noninactivated fibers. This implies that the marked peak of Ca(2+) release is a property of a cooperating collection of voltage sensors rather than individual ones. Local anesthetics reduced the peak of release flux at every test voltage, and the steady phase to a lesser degree. At variance with sustained depolarization, they made p/s low at all voltages. These observations were well-reproduced by the "couplon" model of dual control, which assumes that depolarization and anesthetics respectively, and selectively, disable its Ca(2+)-dependent or its voltage-operated channels. This duality of effects and their simulation under such hypotheses are consistent with the operation of a dual, two-stage control of Ca(2+) release in muscle, whereby Ca(2+) released through multiple directly voltage-activated channels builds up at junctions to secondarily open Ca(2+)-operated channels. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(03)74470-1 |