Dynamic Flux Balance Analysis of Diauxic Growth in Escherichia coli
Flux Balance Analysis (FBA) has been used in the past to analyze microbial metabolic networks. Typically, FBA is used to study the metabolic flux at a particular steady state of the system. However, there are many situations where the reprogramming of the metabolic network is important. Therefore, t...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2002-09, Vol.83 (3), p.1331-1340 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flux Balance Analysis (FBA) has been used in the past to analyze microbial metabolic networks. Typically, FBA is used to study the metabolic flux at a particular steady state of the system. However, there are many situations where the reprogramming of the metabolic network is important. Therefore, the dynamics of these metabolic networks have to be studied. In this paper, we have extended FBA to account for dynamics and present two different formulations for dynamic FBA. These two approaches were used in the analysis of diauxic growth in
Escherichia coli. Dynamic FBA was used to simulate the batch growth of
E.
coli on glucose, and the predictions were found to qualitatively match experimental data. The dynamic FBA formalism was also used to study the sensitivity to the objective function. It was found that an instantaneous objective function resulted in better predictions than a terminal-type objective function. The constraints that govern the growth at different phases in the batch culture were also identified. Therefore, dynamic FBA provides a framework for analyzing the transience of metabolism due to metabolic reprogramming and for obtaining insights for the design of metabolic networks. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(02)73903-9 |