Design of Supported Membranes Tethered via Metal-Affinity Ligand-Receptor Pairs

Model lipid layers are very promising in investigating the complex network of recognition, transport and signaling processes at membranes. We have developed a novel and generic approach to create supported lipid membranes tethered by metal-affinity binding. By self-assembly we have generated various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2000-12, Vol.79 (6), p.3144-3152
Hauptverfasser: Rädler, Ulf, Mack, Jürgen, Persike, Norbert, Jung, Günther, Tampé, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Model lipid layers are very promising in investigating the complex network of recognition, transport and signaling processes at membranes. We have developed a novel and generic approach to create supported lipid membranes tethered by metal-affinity binding. By self-assembly we have generated various interfaces that display histidine sequences (6xHis) via polymer spacers. These histidine-functionalized interfaces are designed to allow specific docking and fusion of vesicles containing metal-chelating lipids. By means of surface plasmon resonance and atomic force microscopy we analyzed the formation and subsequently the structure of these solid-supported membranes. Although the affinity constant of single ligand-receptor pairs is only in the micromolar range, very stable immobilization of these membranes was observed. This behavior can be explained by multivalent interactions resembling many features of cell adhesion. The process is highly specific, because vesicle docking and bilayer formation are strictly dependent on the presence of metal-affinity ligand-receptor pairs. The surface accessibility and geometry of these tethered membranes were probed by binding of histidine-tagged polypeptides. The supported membranes show adsorption kinetics and values similar to planar supported monolayers. Using various combinations of metal-chelating and histidine-tagged lipids or thiols these metal-affinity-tethered membranes should make a great impact on probing and eventually understanding the dynamic dialog of reconstituted membrane proteins.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(00)76548-9