Bistability in the Ca(2+)/calmodulin-dependent protein kinase-phosphatase system
A mathematical model is presented of autophosphorylation of Ca(2+)/calmodulin-dependent protein kinase (CaMKII) and its dephosphorylation by a phosphatase. If the total concentration of CaMKII subunits is significantly higher than the phosphatase Michaelis constant, two stable steady states of the C...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2000-11, Vol.79 (5), p.2211-2221 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A mathematical model is presented of autophosphorylation of Ca(2+)/calmodulin-dependent protein kinase (CaMKII) and its dephosphorylation by a phosphatase. If the total concentration of CaMKII subunits is significantly higher than the phosphatase Michaelis constant, two stable steady states of the CaMKII autophosphorylation can exist in a Ca(2+) concentration range from below the resting value of the intracellular [Ca(2+)] to the threshold concentration for induction of long-term potentiation (LTP). Bistability is a robust phenomenon, it occurs over a wide range of parameters of the model. Ca(2+) transients that switch CaMKII from the low-phosphorylated state to the high-phosphorylated one are in the same range of amplitudes and frequencies as the Ca(2+) transients that induce LTP. These results show that the CaMKII-phosphatase bistability may play an important role in long-term synaptic modifications. They also suggest a plausible explanation for the very high concentrations of CaMKII found in postsynaptic densities of cerebral neurons. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(00)76469-1 |