Analysis of Lung Surfactant Model Systems with Time-of-Flight Secondary Ion Mass Spectrometry

An often-used model lung surfactant containing dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and the surfactant protein C (SP-C) was analyzed as Langmuir-Blodgett film by spatially resolved time-of-flight secondary ion mass spectrometry (TOF-SIMS) to directly visuali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2000-07, Vol.79 (1), p.357-369
Hauptverfasser: Bourdos, Nikolaus, Kollmer, Felix, Benninghoven, Alfred, Ross, Michaela, Sieber, Manfred, Galla, Hans-Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An often-used model lung surfactant containing dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), and the surfactant protein C (SP-C) was analyzed as Langmuir-Blodgett film by spatially resolved time-of-flight secondary ion mass spectrometry (TOF-SIMS) to directly visualize the formation and composition of domains. Binary lipid and lipid/SP-C systems were probed for comparison. TOF-SIMS spectra revealed positive secondary ions (SI) characteristic for DPPC and SP-C, but not for DPPG. SI mapping results in images with domain structures in DPPC/DPPG and DPPG/SP-C, but not in DPPC/SP-C films. We are able to distinguish between the fluid and condensed areas probably due to a matrix effect. These findings correspond with other imaging techniques, fluorescence light microscopy (FLM), scanning force microscopy (SFM), and silver decoration. The ternary mixture DPPC/DPPG/SP-C transferred from the collapse region exhibited SP-C-rich domains surrounding pure lipid areas. The results obtained are in full accordance with our earlier SFM picture of layered protrusions that serve as a compressed reservoir for surfactant material during expansion. Our study demonstrates once more that SP-C plays a unique role in the respiration process.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(00)76297-7