Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering

Mean macromolecular dynamics was quantified in vivo by neutron scattering in psychrophile, mesophile, thermophile and hyperthermophile bacteria. Root mean square atomic fluctuation amplitudes determining macromolecular flexibility were found to be similar for each organism at its physiological tempe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMBO reports 2004-01, Vol.5 (1), p.66-70
Hauptverfasser: Tehei, Moeava, Franzetti, Bruno, Madern, Dominique, Ginzburg, Margaret, Ginzburg, Ben Z, Giudici-Orticoni, Marie-Thérèse, Bruschi, Mireille, Zaccai, Giuseppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mean macromolecular dynamics was quantified in vivo by neutron scattering in psychrophile, mesophile, thermophile and hyperthermophile bacteria. Root mean square atomic fluctuation amplitudes determining macromolecular flexibility were found to be similar for each organism at its physiological temperature (∼1 Å in the 0.1 ns timescale). Effective force constants determining the mean macromolecular resilience were found to increase with physiological temperature from 0.2 N/m for the psychrophiles, which grow at 4°C, to 0.6 N/m for the hyperthermophiles (85°C), indicating that the increase in stabilization free energy is dominated by enthalpic rather than entropic terms. Larger resilience allows macromolecular stability at high temperatures, while maintaining flexibility within acceptable limits for biological activity.
ISSN:1469-221X
1469-3178
1469-221X
DOI:10.1038/sj.embor.7400049