Two transactivation mechanisms cooperate for the bulk of HIF-1-responsive gene expression
The C‐terminal activation domain (C‐TAD) of the hypoxia‐inducible transcription factors HIF‐1α and HIF‐2α binds the CH1 domains of the related transcriptional coactivators CREB‐binding protein (CBP) and p300, an oxygen‐regulated interaction thought to be highly essential for hypoxia‐responsive trans...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2005-11, Vol.24 (22), p.3846-3858 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The C‐terminal activation domain (C‐TAD) of the hypoxia‐inducible transcription factors HIF‐1α and HIF‐2α binds the CH1 domains of the related transcriptional coactivators CREB‐binding protein (CBP) and p300, an oxygen‐regulated interaction thought to be highly essential for hypoxia‐responsive transcription. The role of the CH1 domain
in vivo
is unknown, however. We created mutant mice bearing deletions in the CH1 domains (ΔCH1) of
CBP
and
p300
that abrogate their interactions with the C‐TAD, revealing that the CH1 domains of
CBP
and
p300
are genetically non‐redundant and indispensable for C‐TAD transactivation function. Surprisingly, the CH1 domain was only required for an average of ∼35–50% of global HIF‐1‐responsive gene expression, whereas another HIF transactivation mechanism that is sensitive to the histone deacetylase inhibitor trichostatin A (TSA
S
) accounts for ∼70%. Both pathways are required for greater than 90% of the response for some target genes. Our findings suggest that a novel functional interaction between the protein acetylases CBP and p300, and deacetylases, is essential for nearly all HIF‐responsive transcription. |
---|---|
ISSN: | 0261-4189 1460-2075 |
DOI: | 10.1038/sj.emboj.7600846 |