Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres
1. Voltage clamp studies of the excitatory sodium current, INa, were carried out in rabbit cardiac Purkinje fibres using th two-micro-electrode technique. Previous work has shown the rabbit Purkinje fibre to have relatively simple morphology (Sommer & Johnson, 1968) and electrical structure (Col...
Gespeichert in:
Veröffentlicht in: | The Journal of physiology 1980-08, Vol.305 (1), p.215-234 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1. Voltage clamp studies of the excitatory sodium current, INa, were carried out in rabbit cardiac Purkinje fibres using th
two-micro-electrode technique. Previous work has shown the rabbit Purkinje fibre to have relatively simple morphology (Sommer
& Johnson, 1968) and electrical structure (Colatsky & Tsien, 1979a) compared to other cardiac preparations. 2. Non-uniformities
in membrane potential were kept small by reducing the size of INa to less than 50 microA/cm2 of total membrane surface area
through prepulse inactivation or removal of external sodium, Nao. Temporal resolution was improved by cooling to 10-26 degrees
C. These adjustments did not greatly alter the measured properties of the sodium channel. 3. Under these conditions, sodium
currents were recorded satisfying a number of criteria for adequate voltage control. Direct measurement of longitudinal non-uniformity
using a second voltage electrode showed only small deviations at the time of peak current. 4. The properties of the sodium
channel were examined using conventional protocols. Both peak sodium permeability, PNa, and steady-state sodium inactivation,
h infinity, showed a sigmoidal dependence on membrane potential. PNa rose steeply with small depolarizations, increasing roughly
e-fold per 3.2 mV, and reaching half-maximal activation at -30 +/- 2 mV. The h infinity -V curve had a midpoint of -74.9 +/-
2 mV and a reciprocal slope of 4.56 +/- 0.13 mV at temperatures of 10-19.5 degrees C, and showed a dependence on temperature,
shifting to more negative potentials with cooling (approximately 3 mV/10 degrees C). Recovery of INa from inactivation in
double pulse experiments followed a single exponential time course with time constants of 108-200 msec at 19 degrees C for
holding potentials near -80 mV. No attempt was made to describe the activation kinetics because of uncertainties about the
early time course of the current. 5. These data predict a maximum duration for INa of less than 1-2 msec and a maximum peak
current density of about 500 microA/cm2 under physiological conditions, i.e. 37 degrees C and 150 mM-Nao. This current magnitude
is sufficient to discharge the membrane capacitance at rates comparable to those measured experimentally (311 +/- 27 V/sec,
Colatsky & Tsien, 1979a). 6. The limitations of the method are discussed. The major problem is the longitudinal cable delay
which limits the speed of voltage control. This makes it difficult to separate the activation of INa from the deca |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1113/jphysiol.1980.sp013359 |