Engineering a domain-locking disulfide into a bacterial malate dehydrogenase produces a redox-sensitive enzyme

Light-dependent reduction of cystine disulfide bonds results in activation of several of the enzymes of photosynthetic carbon metabolism within the chloroplast. We have modeled the tertiary structure of four of these light-activated enzymes, namely NADP-linked malate dehydrogenase, glyceraldehyde-3-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1995-06, Vol.68 (6), p.2218-2223
Hauptverfasser: Muslin, E.H., Li, D., Stevens, F.J., Donnelly, M., Schiffer, M., Anderson, L.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Light-dependent reduction of cystine disulfide bonds results in activation of several of the enzymes of photosynthetic carbon metabolism within the chloroplast. We have modeled the tertiary structure of four of these light-activated enzymes, namely NADP-linked malate dehydrogenase, glyceraldehyde-3-P dehydrogenase, fructosebisphosphatase, and sedoheptulosebisphosphatase, and identified cysteines in each enzyme that be expected to form inactivating disulfide bonds (Li, D., F. J. Stevens, M. Schiffer, and L. E. Anderson, 1994. Biophys. J. 67:29–35). We have now converted two residues in the Escherichia coli NAD-linked malate dehydrogenase to cysteines and produced a redox-sensitive enzyme. Oxidation of domain-locking cysteine residues in the mutant enzyme clearly mimics dark inactivation of the redox-sensitive chloroplast dehydrogenase. This result is completely consistent with our proposed mechanism.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(95)80430-3