Role of skeletal and smooth muscle myosin light chains

A persistent problem with the rotating cross-bridge model for muscle contraction has been the inability to detect any large conformational changes within the myosin molecule to account for a working stroke of 5-10 nm. The recent crystal structure of myosin subfragment-1 suggests a solution to this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1995-04, Vol.68 (4 Suppl), p.120S-126S; discussion 126S-127S
Hauptverfasser: Lowey, S, Trybus, K M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A persistent problem with the rotating cross-bridge model for muscle contraction has been the inability to detect any large conformational changes within the myosin molecule to account for a working stroke of 5-10 nm. The recent crystal structure of myosin subfragment-1 suggests a solution to this problem by showing the presence of two distinct domains: a catalytic or motor domain, from which extends a long, 8.5-nm alpha-helix that is stabilized by the regulatory and essential light chains. Rayment et al. (1993) proposed that closure of a cleft in the motor domain could rotate the light chain-binding domain by a sufficient distance to account for the power stroke. With the development of new in vitro motility assays, and the ability to prepare unusual myosins by biochemical and molecular biological methods, we can now examine this hypothesis and explore the role of the light chains in generating force and movement. Here we will review some of these recent data and outline a possible mechanism for how light chains regulate contractile properties.
ISSN:0006-3495
1542-0086