Relative ligand binding to small or large aggregates measured by scanning correlation spectroscopy

Cell surface receptors transduce signals, required to produce cellular activity, that may be mediated by ligand-induced receptor aggregation. Several receptor systems exhibit both low and high ligand affinities and some models of receptor activation associate receptor clusters with high or low ligan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1990-08, Vol.58 (2), p.503-511
Hauptverfasser: St-Pierre, P.R., Petersen, N.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell surface receptors transduce signals, required to produce cellular activity, that may be mediated by ligand-induced receptor aggregation. Several receptor systems exhibit both low and high ligand affinities and some models of receptor activation associate receptor clusters with high or low ligand binding affinity. In the present work succinyl concanavalin A, which binds with both high and low affinity to receptors, was studied on 3T3 Swiss mouse fibroblasts, where preaggregation of receptors has been postulated. Scanning fluorescence correlation spectroscopy measurements were used to determine the relationship between the degree of ligand binding and the state of receptor aggregation. Correlation analysis of fluorescence fluctuations across the cell surface reveal that the variance of the fluctuations (quantitated by g[0]) increased when the ligand concentration was varied from 0.33 to 67 mg/L. The g(0) values reached a plateau at concentrations greater than approximately 10 mg/L. These data are incompatible with homogeneous receptor distributions or equal affinity receptor binding but are compatible with a partly aggregated receptor system with high affinity binding to small aggregates, and low affinity binding to large aggregates. Computer simulated scanning fluorescence correlation spectroscopy experiments confirm that background fluorescence from the cell does not account for the experimentally observed effects.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(90)82395-X