An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding

Substitution of a cysteine in the extracellular mouth of the pore of the Shaker-delta K+ channel permits allosteric inhibition of the channel by Zn2+ or Cd2+ ions at micromolar concentrations. Cd2+ binds weakly to the open state but drives the channel into the slow (C-type) inactivated state, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1994-04, Vol.66 (4), p.1068-1075
Hauptverfasser: Yellen, G., Sodickson, D., Chen, T.Y., Jurman, M.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Substitution of a cysteine in the extracellular mouth of the pore of the Shaker-delta K+ channel permits allosteric inhibition of the channel by Zn2+ or Cd2+ ions at micromolar concentrations. Cd2+ binds weakly to the open state but drives the channel into the slow (C-type) inactivated state, which has a Kd for Cd2+ of approximately 0.2 microM. There is a 45,000-fold increase in affinity when the channel changes from open to inactivated. These results indicate that C-type inactivation involves a structural change in the external mouth of the pore. This structural change is reflected in the T449C mutant as state-dependent metal affinity, which may result either from a change in proximity of the introduced cysteine residues of the four subunits or from a change of the exposure of this residue on the surface of the protein.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(94)80888-4