Intra and extracellular surface charges near Ca2+ channels in neurons and neuroblastoma cells
The properties of low (LVA) and high (HVA) voltage-activated calcium currents were investigated in rat sensory neurons and a murine neuroblastoma cell line exposed to various concentrations of intra- or extracellular monovalent ([c+]i/o) and trivalent ([c3+]i/o) cations. In neurons, when [c+]i was c...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1992-10, Vol.63 (4), p.954-965 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The properties of low (LVA) and high (HVA) voltage-activated calcium currents were investigated in rat sensory neurons and a murine neuroblastoma cell line exposed to various concentrations of intra- or extracellular monovalent ([c+]i/o) and trivalent ([c3+]i/o) cations. In neurons, when [c+]i was changed from 150 to 20 mM, positive shifts of 18–28 mV were observed in activation curves of both LVA and HVA currents, as well as in LVA inactivation curves. Extracellularly, in divalent-free solutions, [c+]o of 20–50 mM produced medium (12–22 mV) negative shifts of the LVA channel properties. These data were used to estimate, by a "screening" model, a negative surface charge density around neuron's calcium channels of 1/1,000 and 1/1,325 eA-2 at the outside or inside face, respectively. In the presence of physiological concentrations of divalent cations, [c+]o of 20–60 mM caused smaller (4–11 mV) negative shifts of the activation and inactivation curves, which can be explained by assuming a partial neutralization of negative charges by divalent cations. By applying the above procedure to LVA channels of neuroblastoma cells, the ratio of extra- to intracellular surface charge density turned out to be more than tenfold higher than in neurons. Effects produced by [c3+]i/o were not in agreement with expectations based on screening or binding models. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(92)81665-X |