MRP9, An Unusual Truncated Member of the ABC Transporter Superfamily, is Highly Expressed in Breast Cancer
Combining a computer-based screening strategy and functional genomics, we previously identified MRP9 (ABCC12), a member of the ATP-binding cassette (ABC) superfamily. We now show that the gene has two major transcripts of 4.5 and 1.3 kb. In breast cancer, normal breast, and testis, the MRP9 gene tra...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2002-05, Vol.99 (10), p.6997-7002 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Combining a computer-based screening strategy and functional genomics, we previously identified MRP9 (ABCC12), a member of the ATP-binding cassette (ABC) superfamily. We now show that the gene has two major transcripts of 4.5 and 1.3 kb. In breast cancer, normal breast, and testis, the MRP9 gene transcript is 4.5 kb in size and encodes a 100-kDa protein. The protein is predicted to have 8 instead of 12 membrane-spanning regions. When compared with closely related ABC family members, it lacks transmembrane domains 3, 4, 11, and 12 and the second nucleotide-binding domain. In other tissues including brain, skeletal muscle, and ovary, the transcript size is 1.3 kb. This smaller transcript encodes a nucleotide-binding protein of ≈25 kDa in size. An in situ hybridization study shows that the 4.5-kb transcript is expressed in the epithelial cells of breast cancer. An antipeptide antibody designed to react with the amino terminus of the protein detects a 100-kDa protein in testis and the membrane fraction of a breast cancer cell line. Because the 4.5-kb RNA is highly expressed in breast cancer and not expressed at detectable levels in essential normal tissues, MRP9 could be a useful target for the immunotherapy of breast cancer. Because of the unusual topology of the two variants of MRP9, we speculate that they may have a different function from other family members. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.102187299 |