Genome Expression Analysis of Anopheles gambiae: Responses to Injury, Bacterial Challenge, and Malaria Infection

The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-06, Vol.99 (13), p.8814-8819
Hauptverfasser: Dimopoulos, George, Christophides, George K., Meister, Stephan, Schultz, Jörg, White, Kevin P., Barillas-Mury, Carolina, Kafatos, Fotis C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+and Gram-bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malaria partially overlapped with this response. Oxidative stress activated a distinctive set of genes, mainly implicated in oxidoreductive processes. Injury up- and down-regulated gene clusters also were distinctive, prominently implicating glycolysis-related genes and citric acid cycle/oxidative phosphorylation/redox-mitochondrial functions, respectively. Cross-comparison of in vivo and in vitro responses indicated the existence of tightly coregulated gene groups that may correspond to gene pathways.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.092274999