Highly cooperative Ca2+ elevations in response to Ins(1,4,5)P3 microperfusion through a patch-clamp pipette

To study the initial kinetics of Ins(1,4,5)P3-induced [Ca2+]i elevations with a high time resolution and to avoid the problem of cell-to-cell heterogeneity, we have used the combined patch-clamp/microfluorimetry technique. The mathematical description of the microperfusion of Ins(1,4,5)P3 and the su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1995-12, Vol.69 (6), p.2378-2391
Hauptverfasser: Schrenzel, J., Demaurex, N., Foti, M., Van Delden, C., Jacquet, J., Mayr, G., Lew, D.P., Krause, K.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To study the initial kinetics of Ins(1,4,5)P3-induced [Ca2+]i elevations with a high time resolution and to avoid the problem of cell-to-cell heterogeneity, we have used the combined patch-clamp/microfluorimetry technique. The mathematical description of the microperfusion of Ins(1,4,5)P3 and the subsequent Ca2+ release consists of a monoexponential decay (cytosolic Ins(1,4,5)P3 concentration) and a Hill equation (Ins(1,4,5)P3 dose-response curve). Two additional Hill equations and an integration were necessary to include a putative dependence of Ins(1,4,5)P3-induced Ca2+ release on [Ca2+]i. Best-fitting analysis assuming [Ca2+]i-independent Ca2+ release yielded Hill coefficients between 4 and 12. The high cooperativity was also observed with the poorly metabolizable analog Ins(2,4,5)P3 and was independent of extracellular [Ca2+]. Best-fitting analysis including a positive [Ca2+]i feedback suggested a cooperativity on the level of Ins(1,4,5)P3-induced channel opening (n = 2) and an enhancement of Ins(1,4,5)P3-induced Ca2+ release by [Ca2+]i. In summary, the onset kinetics of Ins(1,4,5)P3-induced [Ca2+]i elevations in single HL-60 granulocytes showed a very high cooperativity, presumably because of a cooperativity on the level of channel opening and a positive Ca2+ feedback, but not because of Ca2+ influx or Ins(1,4,5)P3 metabolism. This high cooperativity, acting in concert with negative feedback mechanisms, might play an important role in the fine-tuning of the cellular Ca2+ signal.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(95)80107-4