Photovoltage kinetics of the acid-blue and acid-purple forms of bacteriorhodopsin: evidence for no net charge transfer
Time-resolved photovoltage measurements were performed with the acid-blue (bR605A) and acid-purple (bR565A) forms of bacteriorhodopsin (bR) in the time range from 25 ns to 100 s. The bR605A and bR565A pigments were formed by titration with H2SO4 in the absence and presence of 150 mM KCI, respectivel...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1995-11, Vol.69 (5), p.2066-2073 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-resolved photovoltage measurements were performed with the acid-blue (bR605A) and acid-purple (bR565A) forms of bacteriorhodopsin (bR) in the time range from 25 ns to 100 s. The bR605A and bR565A pigments were formed by titration with H2SO4 in the absence and presence of 150 mM KCI, respectively. Qualitatively the kinetics of the charge displacement in these two states are similar and consist of two fast phases in one direction (100 ns bandwidth limited and approximately 1 microsecond) followed by a decay in the opposite direction via one component for bR605A (4.4 +/- 0.6 ms) or two components for bR565A (33 +/- 8 microseconds and 3.6 +/- 0.5 ms). The transient photovoltage signal returns exactly to the initial value after several milliseconds, well before the passive discharge of the electrical measuring system at 2 s. We conclude that no net charge transfer occurs in either bR605A or bR565A. The direction of the fast components is opposite that of net proton translocation in bR at pH 7. So, if the charge that moves back and forth is due to a proton, it moves first in the direction of the cytoplasmic side of the membrane (< 1 microsecond) and returns to its initial position via the 4.4 ms (bR605A) or the 33 microseconds and 3.6 ms (bR565A) decay components. The amplitude of the charge motion in both low pH forms is too large to be due to isomerization alone and is comparable to one of the major components in bR at pH 7.2 |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(95)80077-9 |