Gibbs sampling and helix-cap motifs
Protein backbones have characteristic secondary structures, including α-helices and β-sheets. Which structure is adopted locally is strongly biased by the local amino acid sequence of the protein. Accurate (probabilistic) mappings from sequence to structure are valuable for both secondary-structure...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2005-01, Vol.33 (16), p.5343-5353 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein backbones have characteristic secondary structures, including α-helices and β-sheets. Which structure is adopted locally is strongly biased by the local amino acid sequence of the protein. Accurate (probabilistic) mappings from sequence to structure are valuable for both secondary-structure prediction and protein design. For the case of α-helix caps, we test whether the information content of the sequence–structure mapping can be self-consistently improved by using a relaxed definition of the structure. We derive helix-cap sequence motifs using database helix assignments for proteins of known structure. These motifs are refined using Gibbs sampling in competition with a null motif. Then Gibbs sampling is repeated, allowing for frameshifts of ±1 amino acid residue, in order to find sequence motifs of higher total information content. All helix-cap motifs were found to have good generalization capability, as judged by training on a small set of non-redundant proteins and testing on a larger set. For overall prediction purposes, frameshift motifs using all training examples yielded the best results. Frameshift motifs using a fraction of all training examples performed best in terms of true positives among top predictions. However, motifs without frameshifts also performed well, despite a roughly one-third lower total information content. |
---|---|
ISSN: | 0305-1048 1362-4962 1362-4962 |
DOI: | 10.1093/nar/gki842 |