A single order-disorder transition generates tension during the Huxley-Simmons phase 2 in muscle

Increasing temperature was used to progressively interconvert non-force-generating into force-generating states in skinned rabbit psoas muscle fibers contracting isometrically. Laser temperature-jump and length-jump experiments were used to characterize tension generation in the time domain of the H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1993-11, Vol.65 (5), p.1886-1898
Hauptverfasser: Davis, J.S., Harrington, W.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing temperature was used to progressively interconvert non-force-generating into force-generating states in skinned rabbit psoas muscle fibers contracting isometrically. Laser temperature-jump and length-jump experiments were used to characterize tension generation in the time domain of the Huxley-Simmons phase 2. In our experiments, phase 2 is subdivisible into two kinetic steps each with quite different physical properties. The fast kinetic component has rate constant of 950 s-1 at 1 degrees C and a Q10 of approximately 1.2. Its rate is tension insensitive and its normalized amplitude declines with rising temperature--behavior that closely parallels the instantaneous stiffness of the cross-bridge. It is likely that this kinetic step is a manifestation of a damped elastic element/s in the fiber. The slow component of phase 2 is temperature-dependent with a Q10 of approximately 3.0. Its rate is sensitive to tension. Unlike the fast component, its amplitude remains in fixed proportion to isometric tension at different temperatures indicating direct participation in tension generation. Similar T-jump studies on frog fibers are also included. The combined results (frog and rabbit) suggest that tension generation occurs in a single endothermic (entropy driven) step in phase 2.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(93)81259-1