Cytoplasmic interactions of syndecan-4 orchestrate adhesion receptor and growth factor receptor signalling
Syndecan-4 is a ubiquitous transmembrane proteoglycan that localizes to the focal adhesions of adherent cells and binds to a range of extracellular ligands, including growth factors and extracellular-matrix proteins. Engagement of syndecan-4 is essential for adhesion formation in cells adhering via...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2002-11, Vol.368 (Pt 1), p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Syndecan-4 is a ubiquitous transmembrane proteoglycan that localizes to the focal adhesions of adherent cells and binds to a range of extracellular ligands, including growth factors and extracellular-matrix proteins. Engagement of syndecan-4 is essential for adhesion formation in cells adhering via certain integrins, and for cell proliferation and migration in response to growth factors. The cytoplasmic domain of syndecan-4 interacts with a number of signalling and structural proteins, and both extracellular and cytoplasmic domains are necessary for regulated activation of associated transmembrane receptors. PDZ domain-containing scaffold proteins (syntenin and CASK) bind to the C-terminus of the syndecan-4 cytoplasmic domain and co-ordinate clustering of receptors and connection to the actin cytoskeleton. Syndecan-4 also binds and activates protein kinase Calpha in the presence of phosphatidylinositol 4,5-bisphosphate, and regulates signalling by Rho-family GTPases and focal adhesion kinase. This review discusses the cytoplasmic interactions of syndecan-4 and how they affect cell behaviour as a consequence of the interaction with extracellular ligands. These conclusions also offer an insight into the role of syndecan-4 in vivo, and are consistent with phenotypes generated as a consequence of abnormal syndecan-4 expression in pathologies and gene disruption studies. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/BJ20021228 |